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Abstract— This works exploits soft constraints in linear
temporal logic task planning to enhance the agent’s capability
in handling potentially conflicting or even infeasible tasks.
Different from most existing works that focus on sticking to
the original plan and trying to find a relaxed plan if the
workspace does not permit, we augment the soft constraints
to represent possible candidate sub-tasks that can be selected
to fulfill the global task. Specifically, a hierarchical temporal
logic specification is developed to represent LTL tasks with soft
constraints and preferences. The hierarchical structure consists
of an outer and inner layer, where the outer layer uses co-
safe LTL to specify the task-level specifications and the inner
layer specifies the low-level task-related atomic propositions via
soft constraints. To cope with the hierarchical temporal logic
specification, a hierarchical iterative search (HIS) algorithm
is developed, which incrementally searches feasible atomic
propositions and automaton states, and returns a task plan
with minimum cost. Rigorous analysis shows that HIS based
planning is feasible (i.e., the generated plan is applicable and
satisfactory with respect to the task specification) and optimal
(i.e, with minimum cost). Extensive simulation demonstrates the
effectiveness of the proposed soft task planning approach.

I. INTRODUCTION

Linear temporal logic (LTL) [1], as a formula language,
has been widely applied to task representation and planning
of agents [2]–[4]. However, these pre-specified constraints
can be restrictive in practice. For instance, the task of clean-
ing a room can be accomplished by either using a vacuum
or a mop. Instead of pre-specifying a particular cleaning
tool, we hope the agent can choose an appropriate tool by
jointly considering multiple factors, such as the workspace
knowledge (e.g., the traveling distance to different cleaning
tools), user preferences, etc. Hence, this work considers
hard and soft constraints, where hard constraints should be
enforced (e.g., avoid obstacles) while soft constraints offers
the agent more flexibility in task and motion planning.

The idea of considering hard and soft constraints is not
new and has been investigated in the literature (cf. [5]–
[7] to name a few). Several metrics have been proposed to
evaluate the task satisfaction with different soft constraints.
For instance, the satisfaction of an atomic proposition is
measured via time windows in [8], [9]. The works of
[7], [10], [11] exploit the difference between the desired
plan and the executed plan which is relaxed to meet the
specification as much as possible. In [12], [13], the number
of unrealized state jumps is considered as the violation of
task specification. In [14], the disjunctive normal form is
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established and the satisfaction degree of each sub-formula is
judged independently. However, these aforementioned results
focus on sticking to the original plan and trying to find
a relaxed plan that is mostly close to the original plan
if the workspace does not permit. Few of them considers
exploiting the soft constraints to represent possible candidate
sub-tasks that can be selected to fulfill the global task. By
introducing the preference, a variety of alternative sub-tasks
are considered as soft constraints, which can be treated
as a cost [15] or formulated as an optimization problem
[9], [16]. Nevertheless, to facilitate the task planning, the
alternative sub-tasks are still the atomic propositions labeled
in the workspace, which limits the flexibility of selecting
appropriate sub-tasks.

To enrich the expressivity of soft constraints and improve
the flexibility of task planning, in this paper, a hierarchical
temporal logic specification is developed to represent LTL
tasks with soft constraints and preferences. Specifically, the
hierarchical structure consists of an outer and inner layer,
where the outer layer specifies the task-level specifications
and the inner layer specifies the low-level task-related atomic
propositions. That is, the atomic propositions of the outer
formula are not directly labeled in the workspace, but
can be satisfied by an inner formula with labeled atomic
propositions in the workspace. The satisfaction degree of
each inner formula for an outer atomic proposition are then
evaluated to indicate the preference of soft constraints. To
generate the task plan, the hierarchical iterative search (HIS)
is developed for the proposed hierarchical temporal formula.
HIS incrementally searches feasible atomic propositions and
automaton states, and all feasible inner formulas are eval-
uated and sorted. By pruning, the search space can be
effectively reduced. During planning for the outer formula,
different planning results of inner formula can be provided
according to different initial states, which cannot be realized
by existed graph searching or optimization-based method.
Extensive simulation demonstrates the effectiveness of the
proposed soft task planning approach.

The contribution of this paper are summarized as follows.
First, we develop a hierarchical temporal formula consisting
of outer and inner temporal logic formulas, which can effec-
tively express soft constraints and evaluate the completion
of the task. Second, to cope with the hierarchical temporal
formula, a hierarchical iterative search (HIS) algorithm is
developed, which can effectively generate a feasible plan by
searching and iteration in an incremental hierarchical tree.
Third, rigorous analysis shows that the plan obtained by HIS
is feasible (i.e., the generated plan is satisfactory with respect
to the LTL task) and optimal (i.e., with minimum cost).
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II. PRELIMINARIES

As a formal language, LTL is defined over a set of atomic
propositions AP with Boolean and temporal operators. The
syntax of LTL is defined as:

ϕ := true|ap|ϕ1 ∧ ϕ2|¬ϕ1|Xϕ|ϕ1Uϕ2

where ap ∈ AP is an atomic proposition, true, ¬ (nega-
tion), and ∧ (conjunction) are propositional logic operators,
and X (next) and U (until) are temporal operators. Other
propositional logic operators such as false, ∨ (disjunction),
→ (implication), and temporal operators such as G (always)
and F (eventually) can also be defined [1].

The word π = π0π1 . . . is an infinite sequence where
πi ∈ 2AP , ∀i ∈ Z. Given a word π = π0π1 . . ., denote
by π [j . . .] = πjπj+1 . . . and π [. . . j] = π0 . . . πj . The
semantics of LTL formulae are interpreted over π, which are
referred to [1]. As indicated in [17], given an LTL formula
Φ and a word π = π0π1 . . . ∈ (2AP )ω satisfying π |= ϕ, π
is said to have a good prefix if there exists n ∈ N and a trun-
cated finite sequence π[. . . n] such that π[. . . n]π[n . . .] |= ϕ
for any infinite sequence π[n . . .] ∈ (2AP )ω . Such a formula
ϕ is called a co-safe LTL formula, which can be translated
into a non-deterministic finite automata (NFA) [18].

Definition 1. An NFA is a tuple A = {S, S0,Σ, δ,F}, where
S is a finite set of states, S0 ⊆ S is the set of initial states,
Σ = 2AP is the finite alphabet, δ : S×Σ → 2S is a transition
function, and F ⊆ S is the set of accepting states.

Let ∆ : S×S → 2Σ denote the set of atomic propositions
that enables state transitions in NFA, i.e., ∀π′ ∈ ∆(s, s′),
s′ ∈ δ(s, π). A valid run s = s0s1s2 . . . of A generated by
the word π with πi+1 ∈ ∆(si, si+1) is called accepting, if s
intersects with F . A co-safe LTL formula can be translated
to an NFA by the tool [19]. In this paper, NFA will be used
to track the progress of the satisfaction of co-safe LTL tasks.

III. PROBLEM FORMULATION

Consider a bounded workspace M ⊂ R2. Let L : M →
AP be a labeling function mapping an area in M to an
executable atomic proposition and let LM : AP → M
indicate the executable area of an atomic proposition. To
specify robot tasks in M , co-safe LTL is employed in this
work. For instance, the task of fetching a cleaning tool
and then cleaning the room can be specified as a co-safe
LTL formula ϕ = F (ap1 ∧ Fap2), where the mop (i.e., a
cleaning tool) and the room to be cleaned in the workspace
M are labeled with ap1 and ap2, respectively. Since the
task ϕ only requires fetching a cleaning tool, if there exist
multiple cleaning tools (e.g., a vacuum and a mop) stored
in different locations, either fetching a vacuum or a mop
before room cleaning should all satisfies the task ϕ. Hence,
instead of specifying a position dependent task as in many
existing works (e.g., fetching a mop by visiting the specific
area labeled with ap1), we propose to extend ap1 with soft
constraints. That is, ap1 can be mapped to a set of areas in
M to reflect all feasible candidate sub-tasks. These labeled

areas can also be sorted by preference, such as using the
preference measures in [15], [20].

To this end, we decouple the tasks and their executable
positions by introducing a hierarchical structure to represent
tasks with soft constraints and preferences, where the outer
layer specifies the task while the inner layer specifies the
task related executable positions. Specifically, given a set of
atomic propositions AP , we construct a set of inner and outer
atomic propositions APin and APout, where APout is only
task dependent and APin is position dependent labeling the
executable areas in the workspace, i.e., LM : APin → M .
Based on APin and APout, the co-safe LTL formula ϕin and
ϕout can be constructed accordingly, where the outer task
ϕout indicates the task specifications. Let ϕ∗

in denote the set
of all inner tasks that satisfies the outer atomic propositions
and each ϕin ∈ ϕ∗

in represents an inner task defined over
APin. That is, an apout ∈ APout can be satisfied by com-
pleting an arbitrary inner task ϕin ∈ ϕ∗ and its satisfaction
degree can be evaluated by E : APout × ϕ∗

in → [0, 1].
Specifically, E(apout, ϕin) indicates the satisfaction degree
of apout if the inner task ϕin is executed. Hereafter, we
denote by (ϕout, E) a hierarchical LTL formula, where ϕout

is an outer formula and E is the evaluation function.

Example 1. Given the cleaning task ϕ, we define APout ={
ap1out, ap

2
out

}
and ϕout = F (ap1out∧Fap2out), where ap1out

and ap2out indicate the task of fetching a cleaning tool and the
task of room cleaning, respectively. Suppose there are four
areas of interest in the workspace, i.e., the carpet cleaner
ap1in, the carpet spray ap2in, the vacuum ap3in, and the room
to be cleaned ap4in. The related sub-tasks for APout are
defined as follows: ϕ1 = Fap1in ∧ Fap2in indicates the
task of fetching the carpet cleaner and spray, ϕ2 = Fap3in
indicates the task of taking the vacuum, and ϕ3 = Fap4in
indicates the task of visiting and cleaning the room. The
evaluation function is then defined as E(ap1out, ϕ1) = 0.9,
E(ap1out, ϕ2) = 1, and E(ap2out, ϕ3) = 1, which indicates
that ap1out has a soft constraint as it can be satisfied by either
completing ϕ1 or ϕ2, and ap2out has a hard constraint as it
can only be satisfied by completing ϕ3.

The plan of a hierarchical formula (ϕout, E) in M is
defined as Π = (πout,πin, s, ϕ), where πout = πout

0 πout
1 . . .

and πin = πin
0 πin

1 = π0
0π

1
0π

1
1π

1
2 . . . are the words cor-

responding to the outer and inner propositions, respec-
tively, where πout

i ∈ APout and πi
j ∈ APin indicates

the jth element of πin
i , i = 0, 1, . . .. Let Aout =

{Sout, Sout0,Σout,∆out,Fout} denote the NFA of ϕout and
s = s0s1s2 . . . indicates a run of Aout. Let ϕ = ϕ0ϕ1ϕ2 . . .
denote the sequence of inner tasks. Note that π0 indicates
the empty outer proposition, s0 indicates the starting state
in Sout0, ϕ0 indicates the empty formulas. Specially, to
connect two outer propositions πout

i−1 and πout
i , the initial

inner proposition πi
0 of πin

i is defined to map to the end
proposition of πin

i−1, i.e., LM(πi
0) = LM(πi−1

|πin
i−1|

). Then,
for i > 0, si ∈ Sout indicates the state of Aout after
the execution of πout

i . A plan Π satisfying (ϕout, E) in M
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is denoted as Π |= (ϕout, E,M). Specifically, if πout
i ∈

∆(si−1, si) and E(πout
i , ϕi) > 0, ∀i ∈ N+, and πout is

accepting for ϕout, then Π |= (ϕout, E,M). Note that Π
consists of a series of plan tuples Πi = (πout

i ,πin
i , si, ϕi),

denoted as Π = Π0Π1Π2 . . .. The cost of Π is defined as

Cost(Π) =
∑
i∈N+

{
α(1− E(πout

i , ϕi)) +D(πin
i )

}
, (1)

where

D(πin
i ) =

∑
πi
j∈πin

i ,j>0

∥LM(πi
j−1)− LM(πi

j)∥. (2)

In (1), α(1−E(πout
i , ϕi)) evaluates the dissatisfaction cost,

where α ∈ R+ is a tuning weight indicating the relative
importance. The term D(πin

i ) is the traveling cost for inner
task ϕi. The feasible plan with minimum cost is considered
as the optimal plan in this work. Then, the planning problem
for the proposed hierarchical temporal formula specification
is stated as follows.

Problem 1. For an environment M and a hierarchical tem-
poral formula specification (ϕout, E), the goal is to obtain
an optimal plan Π |= (ϕout, E,M) with minimum Cost(Π).

IV. TASK PLAN
Due to undetermined inner tasks (i.e., soft constraints),

Problem 1 cannot be solved by graph-search based algo-
rithms as they require a complete and deterministic product
automaton. To address this challenge, a hierarchical iterative
search (HIS) is developed to incrementally construct the plan
Π. As shown in Fig. 1, HIS first searches the NFA states
and atomic propositions for ϕout to construct a tree to track
the task progress. Based on the current system states and
selected apout ∈ APout, HIS further searches inner formulas
ϕin ∈ ϕ∗ satisfying E(apout, ϕin) > 0. The plan for ϕin can
be obtained by task planner in [21]–[23] and the system state
and cost are updated accordingly. The feasible plan can then
be obtained from the tree to guide the motion of robot.

Fig. 1. The framework of hierarchical iterative search (HIS). Given an
outer formula ϕout, a set of inner formula ϕin and the evaluation function
E, the hierarchical formula (ϕout, E) can be constructed. Based on the
NFA Aout, the feasible outer atomic propositions and inner task can be
searched and construct a node to indicate the task progress. Then, based on
the searched inner task, the inner planner generates the plan with minimum
cost, which guides the iteration of system states and pruning of nodes. After
search, a plan with minimum cost for outer task will be obtained as Π.

The searching tree T = {d0, d1, d2, . . .} is defined as a
set of nodes di = {sTi , πTout

i ,πTin
i , ϕT

i , fi, pi, ci} where

• sTi ∈ Sout is the NFA state corresponding to ϕout;
• πTout

i ∈ APout is an atomic proposition of ϕout;
• πTin

i indicates the sub-tasks performed for πTout
i ;

• ϕT
i is the selected inner formula for πTout

i ;
• fi ∈ T is the father node of di.
• pi is the robot position after performing πTout

i ;
• ci is the cost after performing πTout

i .
Based on the tree T , the planner HIS is developed and Alg.
1 outlines how the tree T is constructed. After generating the
NFA Aout of ϕout, T is first initialized as the root node d0
with Flag(d0) = 0 indicating that d0 has not generated child
nodes yet. The algorithm ends if all nodes have generated
child nodes. For node di satisfying Flag(di) = 0, the NFA
state s and apout satisfy apout ∈ ∆(sTi , s). Let Spre(di)
be the set of searched NFA states in the node path from
d0 to di, which satisfies Spre(di) = Spre(fi) ∪ {sTi } and
Spre(d0) = ∅. To reduce the search space, HIS only selects
unexplored NFA states for di, i.e., ∀s ∈ Sout − Spre(di).
The inner formula ϕin ∈ ϕ∗

in satisfying E(apout, ϕin) > 0
is selected as the performed sub-task for apout. The function
Generate is invoked to generate the set of child nodes d∗sub,
which are then added to the tree T . After all nodes have
generated their child nodes, the node dj that completes ϕout

with minimum cost will be selected. The node path from d0
to dj , denoted as P (dj , T ) = dj0dj1 . . . djn , can be traced in
T , where dj0 = d0, djn = dj , and ∀i ∈ [n], fji = dji−1 . For
each node di ∈ d∗, (πTout

i ,πTin
i , sTi , ϕ

T
i ) can be constructed

as a plan tuple Πi and all plan tuples can be constructed as
the plan Π, denoted by function Plan(d∗). Finally, we obtain
a feasible plan Π i.e., Π |= (ϕout, E,M).

Algorithm 1: Hierarchical Iterative Search
Input: ϕ∗

in, ϕout, E, M
Output: Π

1 Convert ϕout to NFA Aout;
2 Initialize the T = {d0}, Flag(d0) = 0;
3 while 1 do
4 if Tra(d) = 1,∀d ∈ TD , then
5 break;
6 end
7 for di ∈ T , s.t. Flag(d) = 0 do
8 for s ∈ Sout − Spre(di), apout ∈ APout,

ϕin ∈ ϕ∗
in, apout ∈ ∆(sTi , s), E(apout, ϕin) > 0

do
9 d∗sub = Generate(di, s, apout, ϕin,M, T );

10 Add new nodes d∗sub into T ;
11 end
12 Flag(d) = 1;
13 end
14 end
15 Select dj satisfied that sTj ∈ Fout and cj ≤ ci, ∀di ∈ T

satisfying sTi ∈ Fout;
16 d∗ = P (dj , T );
17 Π = Plan(d∗);
18 Return Π

In Alg. 1, function Generate is developed to construct
the set of child nodes d∗sub. First, for each inner sub-
task π ∈ APin, the plan πin for ϕin with minimum
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cost can be obtained by existing methods [21], [24]. Let
πin = Planner(ϕin,M, pi, LM(π)) be the generated plan,
which satisfies the initial position LM(πin

0 ) = pi and
the end position LM(πin

n ) = LM(π), n = |πin|. Given
the plan πin, the child node dsub can be initialized by
the searched NFA state s ∈ Sout, the atomic proposition
apout ∈ APout, the inner formula ϕin ∈ ϕ∗

in, and the
plan πin. Then, the system can be updated from the initial
position pi to the final position of πin, i.e., p = LM(πin

n ),
n = |πin|. The cost c is determined by (1), where α(1 −
E(apout, ϕin)) indicates the dissatisfaction cost caused by
ϕin and

∑
πj∈πin ∥LM(πj−1) − LM(πj)∥ indicates the

traveling cost. The tree can be further pruned to reduce the
search space. If there exists a node dj ∈ T with the same
NFA state and smaller cost, the child node dsub will not
generate its child nodes by setting Flag(dsub) = 1. If there
exists a node dj ∈ T with the same NFA state and larger cost,
then for each node dk expanded by dj are set Flag(dk) = 1.
It guarantees that, for each NFA state s ∈ Sout, only one
node with NFA state s can generate the child nodes, which
reduces the searchable space without affecting the feasibility
of plan. For the node with sT ∈ Fout, which indicates that
ϕout has been completed, we set Flag(dsub) = 1 to terminate
the expansion of the node dsub. Finally, dsub will be added
into d∗sub for the next expansion in Alg. 1.

Algorithm 2: Generate
Input: di, s, apout, ϕin, M , T
Output: d∗sub

1 Initialize d∗sub = ∅;
2 for π ∈ APin and ∃πin = Planner(ϕin,M, pi, LM(π))

do
3 Initialize dsub = {sT , πout,πin, ϕT , f, p, c};
4 sT = s, πout = apout, ϕT = ϕin, f = di;
5 p = LM(πin

n ), n = |πin|;
6 c = ci + α(1− E(apout, ϕin)) +∑

πj∈πin ∥LM(πj−1)− LM(πj)∥;
7 for dj in T do
8 if c ≥ cj , sT = sTj and p = pj then
9 Flag(dsub) = 1;

10 end
11 if c < cj , sT = sTj and p = pj then
12 ∀dk satisfying dj ∈ P (dk, T ), Flag(dk) = 1;
13 end
14 end
15 if sT ∈ Fout then
16 Flag(dsub) = 1;
17 end
18 Add dsub into d∗sub;
19 end
20 Return d∗sub;

V. ALGORITHM ANALYSIS

This section shows that the plan Π generated by HIS is
feasible, and optimal. The optimality indicates that Π has the
minimum cost for Problem 1.

Theorem 1. Given M and a hierarchical formula (ϕout, E),
the generated plan Π by HIS is guaranteed to be feasible.

Proof. Consider a node di ∈ T and suppose the associated
node path is P (di, T ). By Alg. 1, ∀dij ∈ P (di, T ), there
exists πTout

ij
∈ ∆(sTij−1

, sTij ) satisfying E(πTout
ij

, ϕij ) > 0.
Therefore, for Πj = (πTout

j ,πTin
j , sTj , ϕ

T
j ), j ∈ [|P (di, T )|],

there exists πTout
j ∈ ∆(sTj−1, s

T
j ) satisfying E(πTout

i , ϕT
i ) >

0. Since the selected node dj satisfies sTj ∈ Fout, πout is an
accepting word for ϕout, i.e., Π |= (ϕout,M).

Lemma 1. The generated plan Π by HIS does not have the
same NFA states and the pruned nodes.

Proof. We first show that Π does not have the same
NFA states. Suppose that there exists a feasible
plan Π = Π0Π1 . . .Πn = (πout,πin, s,ϕ) with
minimum cost Cost(Π). If there exists si = sj ,
i < j, let Πnew = Π0Π1 . . .ΠiΠj+1Πj+2 . . .Πn =
(πnew

out ,π
new
in , snew,ϕnew) be a new plan. The

word sequences of Π and Πnew are denoted as
πin[i . . . j + 1] = πi

ni
. . . πi

n′
i
πi+1
ni+1

. . . πj
n′
j
πj+1
nj+1

. . . πj+1
n′
j+1

and πnew
in [i . . . j + 1] = πi

ni
. . . πi

n′
i
πj+1
nj+1

. . . πj+1
n′
j+1

.
As

∑
πk∈πi

n′
i
...πj+1

nj+1
∥LM(πk) − LM(πk−1)∥ ≥

∥LM(πj+1
nj+1

) − LM(πi
n′
i
)∥ and ∀πout

k ∈ πout[i . . . j + 1],
α(1 − E(πout

k , ϕk)) ≥ 0, there exists Cost(ΠiΠj+1) ≤
Cost(ΠiΠi+1 . . .ΠjΠj+1). Therefore, there exists
Cost(Πnew) ≤ Cost(Π) which conflicts with hypothesis.
Hence, the same NFA state does not exist in Π.

We then show that Π does not have the pruned nodes. Sup-
pose there exist di, dj ∈ T satisfying di = dj , pi = pj , and
ci ≤ cj . If dj ∈ d∗, for the optimal plan Π = Π0Π1 . . .Πn =
(πout,πin, s,ϕ), there exists sTj = sk ∈ s. Then, there ex-
ists another plan Πnew = Plan(di)Πk+1 . . .Πn that satisfies
Cost(Π) − Cost(Πnew) = cj − ci ≥ 0. Therefore, Π is not
the optimal plan and thus the pruned nodes are not in Π.

Theorem 2. Given M and a hierarchical formula (ϕout, E),
the generated plan Π by HIS is guaranteed to be optimal.

Proof. Suppose there exists a feasible plan Πmin =
Π0Π1 . . .Πn = (πout,πin, s,ϕ) with minimum cost
Cost(Π). For the outer atomic proposition πout

i and its inner
task ϕi, there may exists several feasible inner plans, which
include the inner plan πin

i = πi
0π

i
1 . . . π

i
ni

. If there exists
πin

x = πx
0π

x
1 . . . π

x
nx

with larger traveling cost and the same
end position, i.e. D(πin

i ) < D(πin
x ) and LM(πi

ni
) =

LM(πx
nx
), then πin

x will be ignored by Alg. 2. As πin
i and

πin
x generate the same system and task states, if the inner

plan πin
i is replaced by πin

x , the whole cost must be larger.
Therefore, the part of optimal plan πin

i ∈ πin ∈ Πmin can
always be searched by Alg. 2 and the pruning for πin

x does
not affect the optimality. Since the search method in Alg
1 without pruning in Alg 2 can identify all feasible plans,
it must contain Πmin. By Lemma 1, the pruned nodes are
not in the optimal plan. The nodes that construct Πmin are
still in the tree and will be selected in Alg 1. Hence, HIS
guarantees the optimality.

After pruning in Alg. 2, no nodes with the same NFA
states and system states (position) exist in Π. Since we only

2302

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 28,2025 at 02:16:00 UTC from IEEE Xplore.  Restrictions apply. 



consider the areas of interest, the number of system states is
equal to the size of APout. Therefore, the upper bound of
number of nodes in T is |APout| × |Sout|. As indicated in
Alg. 1, there are no nodes with the same NFA states in the
node sequence from the root node to a leaf node. Therefore,
the tree searches for |Sout| times at most. As mentioned
before, there are at most |Sout| × |APout| nodes in the tree
and at most |Sout|× |APout|× |ϕ∗

in| nodes can be generated
in each searching. Therefore, the time complex for |Sout|,
|AP |, |ϕ∗

in| are O(n3), O(n2), O(n), respectively.

VI. SIMULATION RESULTS

In the simulation, LTL2STAR is used to convert LTL
formula to NFA [19]. Python 3.8, Ubuntu 18.4 and ROS
melodic are applied in the system simulation.

A. Numerical Simulations

We first evaluate the performance of HIS with hard and
soft constraints. Consider a hierarchical temporal formula
ϕout = Fap1out∧Fap2out∧Fap3out. The set of inner formulas
is ϕ∗

in = {Fap1in, Fap2in, Fap3in, Fap4in, F (ap4in ∧ Fap3in)}
with APin = {ap1in, ap2in, ap3in, ap4in}. For ap1out and ap2out,
we define E(ap1out, Fap1in) = 1, E(ap1out, ϕin) = 0,
∀ϕin ̸= Fap1in, E(ap2out, Fap2in) = 1, E(ap2out, ϕin) = 0
∀ϕin ̸= Fap2in, then ap1out and ap2out are considered as hard
constraints. For ap3out, we define E(ap3out, Fap3in) = 0.8,
E(ap3out, Fap4in) = 0.6, and E(ap3out, F (ap4in ∧ Fap3in)) =
1, then ap3out has soft constraints. For different workspaces
in Fig. 2, HIS generates the optimal plan as follows. In
Fig. 2(a), there is no ap4in in the workspace. As ap3out
has a soft constraint, there is a feasible plan returned by
HIS, i.e., πin = ap1inap

2
inap

3
in, ϕ1

in = Fap1in, ϕ2
in =

Fap2in, ϕ3
in = Fap3in. In Fig. 2(b), there is no ap1in in

the workspace. As ap1out has a hard constraint with ap1in,
there is no feasible plan returned by HIS. In Fig. 2(c),
as ap3out has a soft constraint with preference, HIS will
search all feasible inner formulas with ap3out. For different
tuning weight α, HIS will select different plans accord-
ing to dissatisfaction costs and travelling costs. If α ≫
maxapi

in,ap
j
in∈APin

{∥LM(apiin) − LM(apjin)∥}, then HIS
will select the plan with smaller dissatisfaction cost. The
obtained plan is πin = ap1inap

2
inap

4
inap

3
in, ϕ1

in = Fap1in,
ϕ2
in = Fap2in, ϕ3

in = F (ap4in ∧ Fap3in). If α = 0, then HIS
will select the plan with smaller traveling cost. The obtained
plan is πin = ap1inap

2
inap

4
in, ϕ1

in = Fap1in, ϕ2
in = Fap2in,

ϕ3
in = Fap4in.

B. Performance of task plan

We then evaluate the performance of HIS in terms of the
solution time in finding an optimal plan. The workspace
M consists of 8 areas of interest and a mobile agent.
The atomic task apiout, i = 1, . . . , 8, represents the task of
visiting area i, respectively. The inner formula set ϕ∗

in =
{ap1in, . . . , ap8in} and evaluation function E are fixed, which
satisfy E(apiout, ap

i
in) = 1 and E(apiout, ap

j
in) = 0, ∀j ̸= i.

The areas of interest and the initial positions of agents are
randomly deployed and the task specification with different

Fig. 2. The task plans in different environments, where the grey dot
indicates the robot and the dashed line indicates the trajectory. The areas
of interest are labeled with ap1in, ap2in, ap3in, and ap4in, respectively. The
paths indicate the obtained plans under different environments and settings.

number of outer atomic propositions and NFA states are
tested in 10 random environments. The average solution time
of 10 runs is listed in Tab I. The solution time is approxi-
mately linearly proportional to |Sout|2, which is smaller than
the upper bound of time complexity O(n3) in Sec. V.

TABLE I
SOLUTION TIME FOR DIFFERENT SETTINGS

|APout| |Sout| Time (/s) |APout| |Sout| Time (/s)
4 16 0.00805 6 56 0.0641
5 32 0.0261 6 60 0.0888
6 18 0.00808 6 64 0.0955
6 33 0.0321 7 96 0.187
6 40 0.0400 7 128 0.323
6 48 0.0469 8 192 0.690
6 52 0.0626 8 256 1.60

C. Experimental Simulations

Consider a warehouse environment as shown in Fig.
3(a), which consists of a storeroom and three warehouses.
The agent is required to inspect the warehouses, clean the
storeroom, and report to the staff in a warehouse, i.e.,
ϕout = Fap1out∧Fap2out∧Fap3out, where ap1out indicates the
cleaning task, ap2out indicates the inspection task, and ap3out
indicates the report task. The inner sub-tasks are defined
as APin = {ap1in, ap2in, ap3in, ap4in, ap5in, ap6in}, where apiin,
i ∈ {1, 2, 3} indicates the ith warehouse, ap4in indicates
the vacuum in warehouse 2, ap5in indicates the trash in
warehouse 3, ap6in indicates cleaning the storeroom.

Based on the outer and inner sub-tasks, the evaluation
function is defined as follows. For the cleaning task ap1out, we
define E(ap1out, F (ap4in ∧ Fap6in)) = 1, E(ap1out, F (ap5in ∧
Fap6in)) = 0.8, which is considered as soft constraints
with preference. For the inspection task ap2out, we define
E(ap2out, Fap1in∧Fap2in∧Fap3in) = 1, which is considered
as a hard constraint. Finally, for the report task ap3out, we
define E(ap1out, Fap1in) = E(ap1out, Fap2in) = 1, which
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Fig. 3. The simulation results. In (a), initial environment constructed in
Gazebo with 6 inner atomic proposition, denoted as ap1-ap6, respectively.
In (b), the agent is executing ap2in for ϕ1. As finding ap4in can not be
executed, the plan will be revised. In (c), after executing ϕ1, the agent
continues to perform ϕ2. In (d), the agent has arrived at warehouse 2 and
completed the whole task ϕout.

is also considered as a soft constraint without preference.
Suppose all inner atomic propositions are feasible initially
and the agent may change the plan if the inner sub-tasks
are found infeasible later. The coefficient α is set larger
than maxapi

in,ap
j
in∈APin

{∥LM(apiin) − LM(apjin)∥}, i.e.,
HIS will select the plan with higher satisfaction degree.

The simulation results are shown in Fig. 3. A feasible plan
is obtained by HIS as Π = (πout,πin, s,ϕ), where πout =
ap2outap

1
outap

3
out, πin = apin1 apin2 apin3 apin4 apin6 apin2 , ϕ1 =

Fap1in ∧ Fap2in ∧ Fap3in, ϕ2 = F (ap4in ∧ Fap6in)), ϕ3 =
Fap2in. In Fig. 3(b), after arriving warehouse 2, the robot
does not find the vacuum, i.e., ϕ2 can not be executed. The
task is then re-planed as πin = apin1 apin2 apin3 apin5 apin6 apin2 ,
ϕ2 = F (ap5in∧Fap6in)). In Fig. 3(c), since it detects the trash
in warehouse 3, ϕ and πin are executable and then the agent
will execute ϕ2. In Fig 3(d), the agent completes the last task
ϕ3 at warehouse 2, as it has smaller cost than performing in
warehouse 1. The simulation video is provided1.

VII. CONCLUSIONS

A hierarchical temporal formula is developed in this
work to facilitate task planning with soft constraints. The
developed search method HIS can incrementally present the
task progress and efficiently generate a feasible and optimal
plan. Simulation results demonstrate the expressiveness of
the proposed formula and the effectiveness of the solution
method. Additional research will consider extending the
proposed method to multi-agent systems.
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